Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9

نویسندگان

  • Shota Nakade
  • Takuya Tsubota
  • Yuto Sakane
  • Satoshi Kume
  • Naoaki Sakamoto
  • Masanobu Obara
  • Takaaki Daimon
  • Hideki Sezutsu
  • Takashi Yamamoto
  • Tetsushi Sakuma
  • Ken-ichi T. Suzuki
چکیده

Genome engineering using programmable nucleases enables homologous recombination (HR)-mediated gene knock-in. However, the labour used to construct targeting vectors containing homology arms and difficulties in inducing HR in some cell type and organisms represent technical hurdles for the application of HR-mediated knock-in technology. Here, we introduce an alternative strategy for gene knock-in using transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) mediated by microhomology-mediated end-joining, termed the PITCh (Precise Integration into Target Chromosome) system. TALEN-mediated PITCh, termed TAL-PITCh, enables efficient integration of exogenous donor DNA in human cells and animals, including silkworms and frogs. We further demonstrate that CRISPR/Cas9-mediated PITCh, termed CRIS-PITCh, can be applied in human cells without carrying the plasmid backbone sequence. Thus, our PITCh-ing strategies will be useful for a variety of applications, not only in cultured cells, but also in various organisms, including invertebrates and vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion

Adoption of a streamlined version of the bacterial clustered regular interspersed short palindromic repeat (CRISPR)/Cas9 defense system has accelerated targeted genome engineering. The Streptococcus pyogenes Cas9 protein, directed by a simplified, CRISPR-like single-guide RNA, catalyzes a double-stranded DNA break at a specific genomic site; subsequent repair by end joining can introduce mutage...

متن کامل

Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) v...

متن کامل

CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani

UNLABELLED The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease ...

متن کامل

CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) is widely used for mediating the knock-in of foreign DNA into the genomes of various organisms. Here, we report a process of CRISPR/Cas-mediated knock-in via non-homologous end joining by the direct injection of Cas9/gRNA ribonucleoproteins (RNPs) in the crustacean Daphnia magna, which is a mod...

متن کامل

Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs

β-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the β-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014